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I. Phys. A Math. Gen. 25 (1992) 2721-2735. Printed i n  the UK 

Phase structure of the two-dimensional 44 field theory within 
thermofield dynamics 

G V Efimov and S N Nedelko 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Head Post Office, 
Po Box 79, SU-I01000 Moscow, Russia 

Received 31 January 1991, in final form 2 January 1992 

Abstract. Phase structure of the two-dimensional &,4 field theory is investigated at arbitrary 
coupling constant and temperature. The critical values of the coupling constant and 
temperature, corresponding to symmetry rearrangement in the system, are calculated by 
the method of canonical transformations within the formalism of thermofield dynamics. 
The Hamiltonians describing the system in each phase are obtained straightforwardly. 

1. Introduction 

In this paper we will consider the phase structure of the models 

L(x, t ) = f + ( x ,  t ) (o-m*)+(X,  t)-+g+Yx, t )  
L(x, t)=fb(x, t)(o+fm2)+(x, 1)-!gb4(x, t )  

(1.1) 

(1.2) 
in the two-dimensional spacetime at finite temperature. 

These Lagrangians describe a one-component scalar field +(x, t ) .  The parameters 
m and g are positive. The Lagrangians are invariant under the transformation 4 + -6. 
The models are super-renormalizable. The renormalization can be performed by normal 
ordering in the Hamiltonians. 

If the dimensionless coupling constant G and the temperature 8 

is small enough, the Lagrangian (1.1) describes the interaction symmetric under 
transformation 4 + -+, but the Lagrangian (1.2) describes the situation of spontaneous 
symmetry breaking. 

The models (1.1). (1.2) are the popular objects for investigation of dynamical 
symmetry reconstruction. This phenomenon is present in many profound four- 
dimensional theories [l]. 

The exact theorems strictly establish the existence of the phase transition in the 
model (1.1) for zero temperature [2,3] a n d  give the arguments that the transition 
should be of the second order [2-41. But these arguments do  not exclude completely 
the possibility of the first-order transition [3]. At the same time, these theorems do  
not give information about the critical value of the coupling constant G. 

approximate critical value of G were made within the Gaussian effective potential 
(GEP) [5-71 and beyond the GEP approximation [8]. 

The symmetry restoration in the model (2) at high temperature ( fJ>>G) was 
investigated within the one-loop or two-loop effective potential calculations [9, IO]. 
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Unfortunately, variational approaches such as OEP do not allow control of the 
exactness of approximation [ l l ] .  The results of [9, 101 are valid only for the high 
temperature limit. Thus it seems interesting to construct the phases in explicit form 
for arbitrary 0, G and to determine for this purpose a method permitting a simple 
accuracy check. 

We will solve the problem by the method of canonical transformations. This 
approach has been used for investigation of various scalar field models at zero 
temperature [U]. Essentially, it is a field-theoretical version of the Bogoluibov transfor- 
mation method. 

The apparatus of thermofield dynamics (TFD) [13,14] provides a natural way to 
take into account the thermal effects within the canonical quantization approach. Since 
the usual operator formalism of quantum field theory can be straightforwardly extended 
to TFD, the method of canonical transformations keeps essentially the same structure 
as in the zero-iemperaiure r'ormuiaiion ji2j. 

We consider canonically quantized within TFD theories (l.l), (1.2) and formulate 
the problem as follows: 

What representation of canonical commutation relations (CCR) is suitable for 
different values of the parameters G, 0 and what physical picture corresponds to 
this representation? 
Within this formulation the notions 'a phase' and 'a representation of CCR* have 

the same sense. According to this we define the phase transition as a transition from 
one representation to another. 

Our approach consists in the following steps: 

Step 1. We construct canonically quantized theory in  representation having a suitable 
physical interpretation for G<c 1, 0<< 1. 
Step 2. We perform canonical transformations of field variables going to field with 
new mass and vacuum condensation and obtain a new representation of CCR. 

The canonical transformation should be introduced in such a way that the total 
Hamiltonian in any representation ( r )  has the 'correct' form. This means that 

H = Hg'+  HI')+ R'"+ VE"'. 

Here HI;' is the standard free Hamiltonian. The interaction Hamiltonian Hi" contains 
the field operators in a degree more than two. The counter-terms operator R"' is 
defined by Hg' and HI'), and it leads to cancellation of all divergencies in perturbation 
theory. The constant E"' has a sense of a ground state energy density (here V is a 
large finite volume). The energy E"' is connected with the free energy density like 

r 
V 

Fir'= E"'"S"' 

where S"' is the the entropy of the system 

Sfep 3. We perform classification of CCR and choose the phase suitable for given 
values of G, 0. There are two mutually additional principles for this choice. A 
representation ( r )  is suitable i f  

(a) the free energy density F"' is smaller in this representation, than in other ones 

( b )  a coupling (we may call it 'an effective coupling') is weaker in this representation 
(this is the conventional criterion); 

than in other possible representations. 
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The demands of the correct form of the total Hamiltonian and the criterion of the 
weak effective coupling relate to the conventional scattering picture of QFT. The 
Hamiltonian H:' describes the non-interacting asymptotical fields. The Hamiltonian 
HI" describes the scattering of the particles and it should not contain quadratic and 
linear terms because they do not lead to any non-trivial scattering but only redefine 
the parameters of the free Hamiltonian. Conventional perturbation expansion for 
scattering amplitudes becomes reasonable only if the effective (perturbation) coupling 
constant is small enough. Thus we consider the representation as suitable if the total 
Hamiltonian has the correct form and the effective coupling is weak. 

For two-dimensional models ( l . l ) ,  (1.2) an effective coupling in any representation 
is given by the dimensionless coupling constant 

where M ( G ,  V )  is the mass of the field in the free Hamiltonian H:). 

do not contradict each other. 

of the first order at G = GJV) accompanied by symmetry breaking (figure 1). 

Incidentally, our calculations here and in [12] show that the criteria ( a )  and ( b )  

For the model (1 .1)  we have found that for any value of 0 there is a phase transition 

Figure 1. Phase diagram for the model ( 1 . 1 ) .  The solid line denotes G.(B); the dashed line 
is obtained by comparing the free energies. 

There are two phase transitions of the first order in the system (1.2) (figure 7). One 
of the phase boundaries lies in the domain of applicability of high temperature 
expansion (0  >> G) and it is in good quantitative agreement with existing results 
[9, 10, 161. The symmetry is restored in both systems ( 1 . 1 )  and (1.2) for any fixed value 
of G, if the temperature is high enough. 

According to (a )  we find the phase boundaries as the points of equality of the free 
energy density for the S- and BS-phases. The critical values of G at zero temperature, 
obtained in this way, coincide with the numerical results of the Gee-approximation 

For arbitrary V the regime of strong coupling is absent in  both models ( l . l ) ,  (1.2). 
The effective coupling constant G,,,( G, V )  is small for any G, 0 excluding the critical 
regions where it is o(1). The function G,dG, 0 )  decreases if G increases. 

In other words our approximation is good enough and hence we have an accurate 
quantum field-theoretical description of the systems, unless the values of G, V are 

r5,71. 
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outside the critical regions. The method we use becomes rough in these regions and 
our result that all transitions are of the first order cannot be considered as well 
established. Thus we can neither confirm nor contradict that the transitions are of the 
second order. 

Our calculations show that the renormalization structure of the models plays a 
crucial role in forming their phase structure both at zero and finite temperature. It 
agrees with the following heuristic motivation (see the monograph by Simon in [Z]). 
Intuitively clear reason for symmetry breaking in (+4)2 comes from the normal operator 
ordering, in other words from the mass renormalization arising from the tadpole 
diagram. Normal ordering makes the potential of the model a two-well type. As a 
consequence the system can transit from the symmetric phase to the non-symmetric 
one, if the coupling constant is large enough. 

This motivation is valid both for zero and finite temperature, since the thermal 
effects do not change the renormalization structure of the models. 

G V Efimov and S N Nedelko 

2. Thermofield dynamics 

It is convenient to deal with a general form of the Lagrangian desnity 

L(x, t ) = $ + ( x ,  t ) ( o - m 2 ) 4 ( x ,  t ) -g‘+’(x ,  r ) - + g 4 4 ( x ,  t ) .  (2.1) 

Putting g’=O we get the Lagrangian (l . l) ,  but if g ’ = m @  then we get the 
Lagrangian ( 1 2 ) ,  shifted to the minimum of the classical potential (a constant term 
we will omit). 

The detailed description of TFD can be found, for example, in [13]. We confine 
ourselves to the brief formulation. 

The total Hamiltonian for the system (2.1) has the following form in the TFD- 

formalism: = H - fi where 

H = Ho+ H, (2.2) 

Ho = dx:  [ ~ ’ ( x )  + ( V ~ ( X ) ) ~  + n ~ ~ + ~ ( x ) ] :  J 

[a(k)  e i”+a+(k)  e-‘”] (2.3) 

(2.4) 
dk 

fi = H*[& 63 

[ & ( k ) e ’ ” + Z ( k )  e-’”] (2.5) 

e ‘” -Z(k )  e-‘”] (2.6) 

dk 1 

w ( k ) = m  

[ a ( k ) ,  o ’ + ( k ’ ) ] =  S(k-  k’) [i(k), i+(k’)] = S(k- k’) .  (2.7) 
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Here the Hamiltonian fi is defined on the Fock space with vacuum vector given by 

a(k)lo)Olo)= B(k) lo )Olo )=  0 

where 10) is the ground state of the field system at zero temperature. 

canonical transformation: 
The temperature-dependent operators n(k, p ) ,  &(k, p )  are introduced by the 

n(k, P )  = 4 k )  cosh(x(k, B ) )  -8+(k) sinh(x(k, p ) )  
i ( k , p ) = B ( k ) c o s h ( x ( k , p ) ) - a + ( k ) s i n h ( x ( k , p ) )  

with the inverse transformation given by 

a ( k ) = n ( k , p )  cosh(x(k ,P) )+2(k ,  P )  sinh(x(k,p)) (2.8) 
d ( k ) = & ( k , P )  cosh(,y(k,p))+a'(k 6) s inh(y(ka)) ,  (2.9) 

a ( k , P ) =  u- ' (P )a (k )u (P)  & ( k , P ) =  u - ' ( p ) c ( k ) u ( p )  

This is the Bogoliubov transformation and it can be performed in the operator form 

where 

(2.iOj 

Although the operators such as (2.10) are only defined in finite volume, they are so 
useful (for example, in determining the forms of Bogoliubov transformations) that we 
will freely use them in the following discussion with the implicit understanding of the 
space cutoff. It is only important for us that such operators determine the canonical 
transformations. 

A ground state of the field system at temperature T = 1/p is defined by the relations 

a(k, P)lo(P))= 0 

<(S P) lo (P) )=O.  

The parameter x(k ,  p )  is defined by 

sinh(x(k, p ) )  = [exp(po) - 1]-1'2. (2.11) 

The connection between TFD and zero-temperature field theory is given essentially 
by the relations 

a ( k ) = d ( k ) O l l  B ( k )  = n O i ( k )  

H = P O I  A=norT. 
They reflect the necessity to use the quasiparticle picture for the description of a 
quantum field system at finite temperature. The state lo) and the operators d ( k ) ,  fi, 
are the ground state, the annihilation operator and the Hamiltonian at zero temperature, 

statistical average. In particular, the expectation value (o(p) IHolo(p))  should be equal 
to the energy of the ideal Bose gas in equilibrium. Such normalization relates to the 
normal ordering of the operators a + ( k ) ,  a ( k )  in the Hamiltonian (2.2) (rather than 

Due 10 ji,ii) vacuum expeciaiion v-aiue of any observabie coincides with its 

n'(S P ) ,  4 k ,  P I ) .  
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3. Canonical transformation 

Here we proceed in the following way: 

Step 1. We construct a new unitary non-equivalent representation of the relations (2.7) 
by a canonical transformation of the operators a ( k )  and i(k). 
Step 2. We fix the parameters of the canonical transformation by a requirement 
providing the correct form of a new Hamiltonian. 
Step 3. We choose a representation, which is suitable for given G, 0 according to our 
criteria ( a ) ,  ( b ) .  
Step 4. We calculate perturbation corrections to the free energy density using the 
Hamiltonians in different representations and reform the phase picture. 

G V Efimov and S N Nedelko 

As the first step we perform the canonical transformation 

a(k j + a/( k j - ~ / z . T ~ B s (  k J = u;;(fj U ; : (  B ja(  k j U, ( B )  u2(f j 

u,(B) = exp{-v%mB dkS(k)[a(k)-a+(k)l]  

U 2 ( f ) = e x p ( i j  dkh(k,f)[a(-k)n(k)-a+(k)a+(-k)lI 

where 

the quantity B is a constant. 

following relations: 
The operator U, has the same structure as U ( p )  (2.10). It is easy to obtain the 

a (  k) = a,( k j  cosh( A (  k, f)) + a; (- k) sinh(A(k,f)) 

a+(k)  = a; (k) cosh( A (k, f)) + a,( -k) sinh(A(k, f)) 
(3.1) 

which are analogous to (2.8), (2.9). 
If the parameter A has the form 

o,(k) =- M 2  = m2(l  +f) 

then using the relations (3.1) one can obtain a new representation for the fields @(x) 
and P(X) ((2.3), (2.4)) 

The U,-transformation leads to the shifting of the field @ at the constant B, thus 

fp = @,+ B. (3.3) 

Analogous transformation are performed for i(k) in order to obtain i,(kj. 
The operators a,, i, annihilate the state 

lo))= u ~ ' ( ~ ) ~ ~ ' ( ~ ) u ~ ' ( B ) ~ ~ ' ( B ) I o ) ~ I o )  
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where fi-transformations coincide with U,,,, up to the substitution of i, 2 for a, a+.  
This equation is a formal relation between the ground states of two unitary non- 
equivalent representations. 

In order to consider the thermal effects we follow the above-mentioned TFD- 
prescriptions to obtain the relation 

a, ( k )  = U, (S P )  CoNx, ( S P )) + 6; (S P ) sinh(xf (k ,  P I )  (3.4) 

where sinh(,y,(k, 0)) =[exp(po,)- 
The operators U,, &, annihilate the state 

lo(B)))= U7'(P)Io)) 
where 

d(0) = 0 s(O)=O. 
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Since the symbol of normal ordering in (3.5) relates to the operators a,, G,, it is 
obvious that the quantity E given by (3.7) is an estimation from above on the energy 
density of the state lo(p))).  The free energy density is given by 

1 
F = E - - S  

VP 
where the entropy S has the form 

dk  
[ n, (k)  . In(nf(k)) - ( 1  - n, (k)) In( 1 - n,(k))] 

n,(k) = [exp(pw,) - 1]-'. 

The expression for S can be rewritten as 

(3.8) 

(3.9) 

Using equations (3.7), (3.8) and (3.9) we obtain the expression for the free energy density 

F =fm2B2+-g[B4-6B2Dg(f)+3D28(f)]+g'B[B2-3De(f)1 
4 

Let us put the coefficients R, P equal to zero 

R ( f , W = O  P ( f ,  B )  = 0. (3.11) 

This requirement leads to H, = 0 and, hence, provides the correct form of the 

The function D,(fj'appeared in (3.6), (3.10) as a result of normal operator ordering. 
Hamiltonian (see introduction). 

It is given by 

DB(f) = A(0; m2)-A,(0; m 2 ( l + f j )  

where A ( x ,  f ;  m 2 )  and A,(x, f ;  m2(1 +f)) are zero temperature propagator with the 
mass m2 and temperature dependent propagator with the mass m2( 1 +f) respectively. 
In other words, Da(f) arises from the mass renormalization and contributes to 
equations (3.10), (3.11) describing the phases. There is the correlation between the 
renormalization and phase structure of the model. 

It is easy to check the equivalence of (3 .11)  to the equations 

which are analogous to the minimum and stability conditions for the effective potential 

We stress that equations (3.11) define the minimum of the free energy (3.10) as a 
function of two variablesf, B and for 0 = 0. Hence, only at 8 = 0 our and GEP numerical 
results [5 ,7]  should coincide. At finite temperature our technique differs from the 
variational approach. 

[I] .  
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4. The symmetric model 

Putting the constant g' equal to zero and using equations (3.11) and (3.6) the following 
equations for f and B are obtained: 

B[gB-3gD0(f)+ m2]  = 0 

3gB2-3gD,(f) - m 2 f =  0. 
(4.1) 

There are two phases in correspondence to two solutions of the system (4.1). 

4.1. The symmetric under +J+ -r$Jphase (S) 

Putting B = 0 in the second equation (4.1) we obtain 

(4.2) 

This equation defines the mass M of the field and has a unique solution for any 
G, 8. Using the relations ( 3 . 9 ,  (3.10) and (4.2) we obtain the Hamiltonian and free 
energy for this phase 

2 --f= -In(l + f ) + 4 d ( e / W ) .  
3G 

4.2. The phase with broken symmetry 

Using the non-zero solution for B we can rewrite (4.1) in the form 

(4.3) 

(4.4) 
1 1  

--f+-= In(1 + f ) - 4  d ( e / m ) .  3G G 

The second equation in (4.4) defines the mass of the field. A numerical analysis 
snows mar rnis equation nas a rcai suiu~ivii urrry iui v, U s u w  ~i ta i  YS- uc{v , .  ine 
function G,(B) is given in figure 1 by the solid line. Using equations (3.5), (3.10) and 
(4.4) we obtain the Hamiltonian and the free energy in the BS-phase 

~ . ~ - ~ - ~ -  ..~-__.~:- .....- c.. - ... I .-,... :-.. ̂_ I _ .  c-- 0 ___^I_ .I_^. C2-C,"\  -_ 

(4.5) 

The free Hamiltonian has the standard form (4.3). The value of condensate B plays 
the role of a parameter of order. 
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At the last step of our consideration we choose a phase which is suitable for a 
given e, G. 

Comparing the effective coupling constants Geff(G, 0) (see (1.3)) in the S- and 
BS-phases we find that the phase-stable boundary is given by the same function G,( e) 
(solid line in figure 1). As soon as the solution for the BS-phase exists, the coupling 
in this phase is weaker than in the symmetric phase (figure 2). 

A comparison of the free energy densities Fs and FB leads to the boundary given 
by the dashed line in figure 1.  The value Go = 1.625.. . coincides with the critical 
coupling constant in the mP-approximation [5,6] since at 8 = 0, and only in this case, 
equations (4.1), (4.2) coincide with the equations minimizing the Gaussian effective 
potential. 

One can see that phase boundaries obtained by these two methods do not contradict 
each other. 

The effective coupling constant is large enough in both phases in the critical region 
(see figure 2), hence, perturbation corrections have to be large and can change the 
boundary given by the dashed line in figure 1. 

Let us calculate these corrections to the free energy densities Fs and FB at zero 
temperature, for simplicity. For this purpose we use the Hamiltonians given in (4.3). 
(4.5). We take into account the corrections up to o(G’) for the phase S and up to 
o( GZff) for the phase BS. The necessary diagrams are shown in figures 3 and 4. The 
result tums out to be equal 

(4.6) 

(4.7) 

m2 
8?r 
M2 
8?r 

AFS = - (-1.671 G2 +4.0388G3 + O( G4)) 

AFB = - ( -1.758Ge~-4.316G2ff - O( G:M)) 

for S and BS respectively. 

coupling eonatant G 

Figure 2. Effective coupling constants for the model ( 1 . 1 ) .  Upper lines relate to the S-phase. 
The case 0 = 1 is  given by the dashed line. 

Figure 3. The diagrams o(G2),  o(C’)  for S-phase 
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Figure 4. The diagrams o(Gc,,), o(G:~,) far BS-phase 

One can see that (4.6) represents the alternating asymptotic series. The series (4.7) 
is non-alternating. This is the usual situation for a system with degenerate vacuum 
(see for example [IS]). So we can make a Bore1 summation of (4.6). This is not so for 
(4.7) because of singularity on the integration contour. Nevertheless, we make the 
summation defining the Cauchy mean value of the integral. The result is 

1 + 0.8057 Gt 
AFs=' 8?r (1: d t  '-'I +0 .8057Gt+0 .8355(Gt ) '~1 )  

-1). 1 +0.5305G.fff 
1 - 1.2275Ge,f A F B = - -  VP dte- '  

M 2  S?r ( lom 
T h e  solid and dashed lines in figure 5 represent the free energy density without 

and with the perturbative corrections, respectively. One can see that the corrections 

W 

h 

- 1  
0 1 0. 0. 

coupling constant G 

Figure 5. Free energy densities for the model (1.1). Solid lines correspond to Fs, FB, 
dashed lines denote Fs+AFs,  F,+AF,.  

coupling constant 0 

Figure 6. The masses for the model (1.1). 
8 = I .  Upper lines relate to the BS-phase. 

Solid liner correspond to 8 =0, dashed lines 
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‘shift’ the critical point from CA= 1.625 to G,(O) 1.44. The analogous picture should 
take place for non-zero temperature either. 

The order parameter and the mass M ( G ,  0) (figure 6) are discontinuous at the 
boundary; hence, the phase transition is of the first order. This conclusion is not well 
established since the coupling constant Gen is large enough in the critical region. 

At the same time, since Gen(G, 0)  is smaller than G,(O) = 1.44. . . and decreases 
when G increases, we conclude that the strong coupling regime does not exist in model 
(1) (see figure 2) and our description of the system is accurate outside the critical region. 

G V Efimou and S N Nedelko 

5. The two-well potential 

Using once more equations (3.6) but with g’=  m m  we obtain for (3.11) the following 
form: 

g B 3 + 3 m  m B2+ B [ m 2 - 3 g D e (  f ) ]  - 3 m  

3gB2+3m -&B-3gD,( f ) -m2f=0.  

According to the solutions of this system there are two phases with broken symmetry 
and one being symmetric. 

De( f )  = 0 
(5.1) 

5.1. S-phase 

The first equation in (5.1) has a solution 

Using (5.2) in the second equation (5.1) we obtain the relation defining the mass of 
the field in the S-phase 

2 1  - f +-= -In(l+ f ) + 4 d ( O / W ) .  
3 G  G 

/ (5.3) 

The unique solution exists for any G, 0. Relations (3.5).  (3.10) and ( 5 . 2 ) .  (5 .3)  lead to 
the Hamiltonian in the form (4.3) and to the following free energy density: 

F -- -+ - + I  f + - - 4 ( i + f ) [ z ~ ( e / ~ ) + d ( e / W ) ]  
’-877 “ ’ I  2G [,’G 3 :L 

5.2. BS-phases 

Using the rest solutions of the first equation (5.1) 

1 *m 
V G G  

E = -  (5.4) 

we obtain the equation for M ( G ,  0) 

( 5 . 5 )  
1 - f =In(l+ f )  - 4 d ( O / W ) .  

3 G  

This equation has solutions only for 0, G such that G S  GY’(0) or G> G?’(B). The 
functions CY’ and Gk2’ are given in figure 7 by the solid lines. There are two solutions 
and they are equal to each other for G = GY’(0) or GL2’(0). These solutions represent 
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two different phases with broken symmetry. Let us demonstrate this for the case 0 =O. 
Since d(0) = 0, one can see that ( 5 . 5 )  has a trivial solution f= 0 for any G, leading to 
the initial representation with the mass m and with the vacuum condensate U =  

*I/-. This is the first BS-phase. In order to exclude this trivial solution from 
( 5 . 5 )  we rewrite the latter in the form (0 =0) 

This equation has a unique solution for any G and defines the second BS-phase with 
the mass and vacuum condensate given by 

M 2 = m 2 ( l + f )  

One can see from (5.6) that 

M 2 = m 2 e x p  -- a s G + O  ( ;GI 

Non-analyticity of M at the point G=O means that the difference between m and M 
cannot be obtained within the perturhative calculations and that the first and second 
solutions of (5 .5 )  represent two different phases. 

One can see from figure 7 that GL”(0) = GL”(0) = G,. Usingf= 0 in (5.6) we obtain 
the value G,=f. The region at the phase plane (figure 7) below the boundary GL”(0) 
corresponds to the first BS-phase, but the region above the boundary GL2’( 0) represents 
the second BS-phase. 

The free Hamiltonian has a standard form. The interaction Hamiltonian and the 
free energy density in the BS-phases take the following form 

At the last step we choose the phase suitable for a given 8, G. 

tefiperature e 
Figure 7. Phase diagram for the model (1.2). Dashed liner are obtained by comparing the 
free energies. 
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The phase-stable boundaries, obtained by comparing the free energies (dashed 
lines in figure 7) and the effective coupling constants (solid lines in figure 7) do not 
contradict each other. The values G, = 0.19.. . and G, = 0.64.. . in figure 7, coincide 
with the result of the cep-approximation [7]; the reason has been explained in the 
previous section. 

Let us discuss the phase picture, given by the functions GF)(e) and GY’(0) (solid 
lines in figure 7). There are two phases with broken symmetry and one which is 
symmetric. At zero temperature the symmetry is broken for any G, but a phase transition 
without symmetry rearrangement takes place at G,=f.  The symmetry is restored for 
any fixed value of G if the temperature is high enough. 

The phase transitions are of the first order since the mass and the order parameter 
U are discontinuous at the phase boundaries, as in figure 8 (dashed line for e = 1). 

The effective coupling constant G.,dG, 0 )  is small unless (G, 0 )  is outside the 
critical regions where G,,, is o(1) (see figure 9). This means that our description of 
the system is good enough everywhere, except at the locality of the phase transitions. 

The phase boundary GF’(0) lies in the region 0>>G of applicability of high 
temperature expansion. Behaviour of this boundary is in good quantitative agreement 
with the results obtained by high temperature expansion [9, 10, 161. 

Figure 8. The order parameter for the model (1.2). The solid line relates to % = O ,  dashed 
lines % = 1. 

coupllng constant G 

Figure 9. Effective coupling constants for the model (1.2). Solid lines correspond to 8 = 0, 
the case 8 = 1 is given by the dashed liner. The upper dashed line relates lo  the S-phase. 
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